Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Cancer Immunol Immunother ; 73(7): 125, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733402

ABSTRACT

BACKGROUND: Despite the success of PD-1 blockade in recurrent/metastatic nasopharyngeal carcinoma (NPC), its effect for locoregionally advanced NPC (LANPC) remains unclear. This study aimed to evaluate the benefit of adding PD-1 blockade to the current standard treatment (gemcitabine and cisplatin IC  plus cisplatin CCRT ) for LANPC patients. METHODS: From January 2020 to November 2022, 347 patients with non-metastatic high-risk LANPC (stage III-IVA, excluding T3-4N0) were included. Of the 347 patients, 268 patients were treated with standard treatment (IC-CCRT), and 79 received PD-1 blockade plus IC-CCRT (PD-1 group). For the PD-1 group, PD-1 blockade was given intravenously once every 3 weeks for up to 9 cycles (3 induction and 6 adjuvant). The primary endpoint was disease-free survival (DFS) (i.e. freedom from local/regional/distant failure or death). The propensity score matching (PSM) with the ratio of 1:2 was performed to control confounding factors. RESULTS: After PSM analysis, 150 patients receiving standard treatment and 75 patients receiving additional PD-1 blockade remained in the current analysis. After three cycles of IC, the PD-1 group had significantly higher rates of complete response (defined as disappearance of all target lesions; 24% vs. 9%; P = 0.006) and complete biological response (defined as undetectable cell-free Epstein-Barr virus DNA, cfEBV DNA; 79% vs. 65%; P = 0.046) than that in the standard group. And the incidence of grade 3-4 toxicity during IC was 47% in the PD-1 group and 41% in the standard group, with no significant difference (P = 0.396). During follow-up period, additional PD-1 blockade to standard treatment improved 3-year DFS from 84 to 95%, with marginal statistical significance (HR, 0.28; 95%CI, 0.06-1.19; P = 0.064). CONCLUSION: Additiaonl PD-1 blockade to gemcitabine and cisplatin IC and adjuvant treatment results in significant improvement in tumor regression, cfEBV DNA clearance, superior DFS, and comparable toxicity profiles in high-risk LANPC patients.


Subject(s)
Chemoradiotherapy , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Propensity Score , Humans , Male , Female , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/drug therapy , Middle Aged , Chemoradiotherapy/methods , Adult , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/drug therapy , Induction Chemotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Aged , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Cisplatin/adverse effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Retrospective Studies , Gemcitabine
2.
Environ Int ; 187: 108721, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38718675

ABSTRACT

BACKGROUND: The new round of WHO/ILO Joint Estimates of the Work-related Burden of Disease assessment requires futher research to provide more evidence, especially on the health impact of ambient air pollution around the workplace. However, the evidence linking obstructive ventilatory dysfunction (OVD) to fine particulate matter (PM2.5) and its chemical components in workers is very limited. Evidence is even more scarce on the interactive effects between occupational factors and particle exposures. We aimed to fill these gaps based on a large ventilatory function examination of workers in southern China. METHODS: We conducted a cross-sectional study among 363,788 workers in southern China in 2020. The annual average concentration of PM2.5 and its components were evaluated around the workplace through validated spatiotemporal models. We used mixed-effect models to evaluate the risk of OVD related to PM2.5 and its components. Results were further stratified by basic characteristics and occupational factors. FINDINGS: Among the 305,022 workers, 119,936 were observed with OVD. We found for each interquartile range (IQR) increase in PM2.5 concentration, the risk of OVD increased by 27.8 (95 % confidence interval (CI): 26.5-29.2 %). The estimates were 10.9 % (95 %CI: 9.7-12.1 %), 15.8 % (95 %CI: 14.5-17.2 %), 2.6 % (95 %CI: 1.4-3.8 %), 17.1 % (95 %CI: 15.9-18.4 %), and 11 % (95 %CI: 9.9-12.2 %), respectively, for each IQR increment in sulfate, nitrate, ammonium salt, organic matter and black carbon. We observed greater effect estimates among females, younger workers, workers with a length of service of 24-45 months, and professional skill workers. Furthermore, it is particularly noteworthy that the noise-exposed workers, high-temperature-exposed workers, and less-dust-exposed workers were at a 5.7-68.2 % greater risk than others. INTERPRETATION: PM2.5 and its components were significantly associated with an increased risk of OVD, with stronger links among certain vulnerable subgroups.

3.
J Hazard Mater ; 471: 134317, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38636229

ABSTRACT

Although previous studies have shown increased health risks of particulate matters, few have evaluated the long-term health impacts of ultrafine particles (UFPs or PM0.1, ≤ 0.1 µm in diameter). This study assessed the association between long-term exposure to UFPs and mortality in New York State (NYS), including total non-accidental and cause-specific mortalities, sociodemographic disparities and seasonal trends. Collecting data from a comprehensive chemical transport model and NYS Vital Records, we used the interquartile range (IQR) and high-level UFPs (≥75 % percentile) as indicators to link with mortalities. Our modified difference-in-difference model controlled for other pollutants, meteorological factors, spatial and temporal confounders. The findings indicate that long-term UFPs exposure significantly increases the risk of non-accidental mortality (RR=1.10, 95 % CI: 1.05, 1.17), cardiovascular mortality (RR=1.11, 95 % CI: 1.05, 1.18) particularly for cerebrovascular (RR=1.21, 95 % CI: 1.10, 1.35) and pulmonary heart diseases (RR=1.33, 95 % CI: 1.13, 1.57), and respiratory mortality (borderline significance, RR=1.09, 95 % CI: 1.00, 1.18). Hispanics (RR=1.13, 95 % CI: 1.00, 1.29) and non-Hispanic Blacks (RR=1.40, 95 % CI: 1.16, 1.68) experienced significantly higher mortality risk after exposure to UFPs, compared to non-Hispanic Whites. Children under five, older adults, non-NYC residents, and winter seasons are more susceptible to UFPs' effects.


Subject(s)
Air Pollutants , Particulate Matter , New York/epidemiology , Humans , Particulate Matter/toxicity , Middle Aged , Aged , Adult , Air Pollutants/toxicity , Female , Male , Child , Adolescent , Child, Preschool , Young Adult , Cardiovascular Diseases/mortality , Environmental Exposure/adverse effects , Mortality/trends , Infant , Socioeconomic Factors , Seasons , Sociodemographic Factors , Particle Size , Infant, Newborn
4.
Ann Am Thorac Soc ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38445971

ABSTRACT

RATIONALE: Exposure to particulate matter is associated with various adverse health outcomes. Ultrafine particles are a unique public health challenge due to their size. However, limited studies have examined their impacts on human health, especially across seasons and demographics. OBJECTIVES: To evaluate the effect of ultrafine particle exposure on the risk of visiting the emergency department for a chronic lower respiratory disease in New York State NYS, 2013-2018. METHODS: We used a case-crossover design and conditional logistic regression to estimate how ultrafine particle exposure led to chronic lower respiratory disease-related emergency department visits. GEOS-Chem-APM, a state-of-the-art chemical transport model with a size-resolved particle microphysics model, generated air pollution simulation data. We then matched ultrafine particle exposure estimates to geocoded health records for asthma, bronchiectasis, chronic bronchitis, emphysema, unspecified bronchitis, and other chronic airway obstructions in NYS from 2013-2018. In addition, we assessed interactions with age, ethnicity, race, sex, meteorological factors, and season. MEASUREMENTS AND MAIN RESULTS: Each interquartile range increase in ultrafine particle exposure led to a 0.37% increased risk of a respiratory-related emergency department visit on lag 0-0 (95% CI: 0.23-0.52%) and a 1.81% increase on lag 0-6 (95% CI: 1.58-2.03%). The highest risk was in the subtype emphysema (lag 0-5: 4.18%, 95% CI: 0.16-8.37%), followed by asthma (lag 0-6: 2.00%), chronic bronchitis (lag 0-6: 1.78%), other chronic airway obstructions (lag 0-6: 1.60%), and unspecified bronchitis (lag 0-6: 1.49%). We also found significant interactions between UFP health impacts and season (fall, 3.29%), temperature (<90th percentile, 2.27%), relative humidity (>90th percentile, 4.63%), age (children <18, 3.19%), and sex (men, 2.06%) on lag 0-6. CONCLUSION: In this study, UFP exposure increased chronic lower respiratory disease-related emergency department visits across all seasons and demographics, yet these associations varied according to various factors, which requires more research.

5.
Environ Pollut ; 348: 123866, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38537800

ABSTRACT

Ambient fine particulate matter (PM2.5) has attracted considerable attention due to its crucial role in the rising global disease burden. Evidence of health risks associated with exposure to PM2.5 and its major constituents is important for advancing hazard assessments and air pollution emission policies. We investigated the relationship between exposure to major constituents of PM2.5 and outpatient visits as well as hospitalizations in Guangdong Province, China, where 127 million residents live in a severe PM2.5 pollution environment. An approach that integrates the generalized weighted quantile sum (gWQS) regression with the difference-in-differences (DID) approach was used to assess the overall mixture effects and relative contributions of each constituent. We observed significant associations between long-term exposure to the mixture of PM2.5 constituents (WQS index) and outpatient visits (IR%, percentage increases in risk per unit WQS index increase:1.73, 95%CI: 1.72, 1.74) as well as hospitalizations (IR%:5.15, 95%CI: 5.11, 5.20). Black carbon (weight: 0.34) and nitrate (weight: 0.60) respectively exhibited the highest contributions to outpatient visits and hospitalizations. The overall mixture effects on outpatient visits and hospitalizations were higher with increased summer air temperatures (IR%: 7.54, 95%CI: 7.33, 7.74 and IR%: 9.55, 95%CI: 8.36, 10.75, respectively) or decreased winter air temperatures (IR%: 1.88, 95%CI: 1.68, 2.08 and IR%: 4.87, 95%CI: 3.73, 6.02, respectively). Furthermore, the overall mixture effects on outpatient visits and hospitalizations were significantly higher in populations with higher socioeconomic status (P < 0.01). It's crucial to address the primary sources of nitrate precursor substances and black carbon (mainly traffic-related and industrial-related air pollutants) and consider the complex interaction effects between air temperature and PM2.5 in the context of climate change. Of particular concern is the need to prioritize healthcare demands in economically disadvantaged regions and to address the health inequalities stemming from the uneven distribution of healthcare resources and PM2.5 pollution.


Subject(s)
Air Pollutants , Air Pollution , Humans , Outpatients , Nitrates , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis , China/epidemiology , Hospitalization , Carbon , Environmental Exposure/analysis
6.
Ecotoxicol Environ Saf ; 274: 116212, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38489900

ABSTRACT

Evidence of the potential causal links between long-term exposure to particulate matters (PM, i.e., PM1, PM2.5, and PM1-2.5) and T2DM mortality based on large cohorts is limited. In contrast, the existing evidence usually suffers from inherent bias with the traditional association assessment. A prospective cohort of 580,757 participants in the southern region of China were recruited during 2009 and 2015 and followed up through December 2020. PM exposure at each residential address was estimated by linking to the well-established high-resolution simulation dataset. Hazard ratios (HRs) were calculated using time-varying marginal structural Cox models, an established causal inference approach, after adjusting for potential confounders. During follow-up, a total of 717 subjects died from T2DM. For every 1 µg/m3 increase in PM2.5, the adjusted HRs and 95% confidence interval (CI) for T2DM mortality was 1.036 (1.019-1.053). Similarly, for every 1 µg/m3 increase in PM1 and PM1-2.5, the adjusted HRs and 95% CIs were 1.032 (1.003-1.062) and 1.085 (1.054-1.116), respectively. Additionally, we observed a generally more pronounced impact among individuals with lower levels of education or lower residential greenness which as measured by the Normalized Difference Vegetation Index (NDVI). We identified substantial interactions between NDVI and PM1 (P-interaction = 0.003), NDVI and PM2.5 (P-interaction = 0.019), as well as education levels and PM1 (P-interaction = 0.049). The study emphasizes the need to consider environmental and socio-economic factors in strategies to reduce T2DM mortality. We found that PM1, PM2.5, and PM1-2.5 heighten the peril of T2DM mortality, with education and green space exposure roles in modifying it.


Subject(s)
Air Pollutants , Air Pollution , Diabetes Mellitus, Type 2 , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Diabetes Mellitus, Type 2/epidemiology , Prospective Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , China/epidemiology , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects
7.
Front Public Health ; 12: 1343950, 2024.
Article in English | MEDLINE | ID: mdl-38450145

ABSTRACT

Introduction: Although the global COVID-19 emergency ended, the real-world effects of multiple non-pharmaceutical interventions (NPIs) and the relative contribution of individual NPIs over time were poorly understood, limiting the mitigation of future potential epidemics. Methods: Based on four large-scale datasets including epidemic parameters, virus variants, vaccines, and meteorological factors across 51 states in the United States from August 2020 to July 2022, we established a Bayesian hierarchical model with a spike-and-slab prior to assessing the time-varying effect of NPIs and vaccination on mitigating COVID-19 transmission and identifying important NPIs in the context of different variants pandemic. Results: We found that (i) the empirical reduction in reproduction number attributable to integrated NPIs was 52.0% (95%CI: 44.4, 58.5%) by August and September 2020, whereas the reduction continuously decreased due to the relaxation of NPIs in following months; (ii) international travel restrictions, stay-at-home requirements, and restrictions on gathering size were important NPIs with the relative contribution higher than 12.5%; (iii) vaccination alone could not mitigate transmission when the fully vaccination coverage was less than 60%, but it could effectively synergize with NPIs; (iv) even with fully vaccination coverage >60%, combined use of NPIs and vaccination failed to reduce the reproduction number below 1 in many states by February 2022 because of elimination of above NPIs, following with a resurgence of COVID-19 after March 2022. Conclusion: Our results suggest that NPIs and vaccination had a high synergy effect and eliminating NPIs should consider their relative effectiveness, vaccination coverage, and emerging variants.


Subject(s)
COVID-19 , United States/epidemiology , Humans , Bayes Theorem , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Vaccination Coverage , Pandemics
8.
Sci Bull (Beijing) ; 69(9): 1313-1322, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38556396

ABSTRACT

Limited evidence exists on the effect of submicronic particulate matter (PM1) on hypertension hospitalization. Evidence based on causal inference and large cohorts is even more scarce. In 2015, 36,271 participants were enrolled in South China and followed up through 2020. Each participant was assigned single-year, lag0-1, and lag0-2 moving average concentration of PM1 and fine inhalable particulate matter (PM2.5) simulated based on satellite data at a 1-km resolution. We used an inverse probability weighting approach to balance confounders and utilized a marginal structural Cox model to evaluate the underlying causal links between PM1 exposure and hypertension hospitalization, with PM2.5-hypertension association for comparison. Several sensitivity studies and the analyses of effect modification were also conducted. We found that a higher hospitalization risk from both overall (HR: 1.13, 95% CI: 1.05-1.22) and essential hypertension (HR: 1.15, 95% CI: 1.06-1.25) was linked to each 1 µg/m3 increase in the yearly average PM1 concentration. At lag0-1 and lag0-2, we observed a 17%-21% higher risk of hypertension associated with PM1. The effect of PM1 was 6%-11% higher compared with PM2.5. Linear concentration-exposure associations between PM1 exposure and hypertension were identified, without safety thresholds. Women and participants that engaged in physical exercise exhibited higher susceptibility, with 4%-22% greater risk than their counterparts. This large cohort study identified a detrimental relationship between chronic PM1 exposure and hypertension hospitalization, which was more pronounced compared with PM2.5 and among certain groups.


Subject(s)
Environmental Exposure , Hospitalization , Hypertension , Particulate Matter , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , China/epidemiology , Female , Male , Hospitalization/statistics & numerical data , Middle Aged , Hypertension/epidemiology , Cohort Studies , Environmental Exposure/adverse effects , Aged , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis
9.
Environ Pollut ; 346: 123469, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38395131

ABSTRACT

The public health burden of increasing extreme weather events has been well documented. However, the influence of meteorological factors on physical activity remains limited. Existing mixture effect methods cannot handle cumulative lag effects. Therefore, we developed quantile g-computation Distributed lag non-linear model (QG-DLNM) by embedding a DLNM into quantile g-computation to allow for the concurrent consideration of both cumulated lag effects and mixture effects. We gathered repeated measurement data from Henan Province in China to investigate both the individual impact of meteorological factor on step counts using a DLNM, and the joint effect using the QG-DLNM. We projected future step counts linked to changes in temperature and relative humidity driven by climate change under three scenarios from the sixth phase of the Coupled Model Intercomparison Project. Our findings indicate there are inversed U-shaped associations for temperature, wind speed, and mixture exposure with step counts, peaking at 11.6 °C in temperature, 2.7 m/s in wind speed, and 30th percentile in mixture exposure. However, there are negative associations between relative humidity and rainfall with step counts. Additionally, relative humidity possesses the highest weights in the joint effect (49% contribution). Compared to 2022s, future step counts are projected to decrease due to temperature changes, while increase due to relative humidity changes. However, when considering both future temperature and humidity changes driven by climate change, the projections indicate a decrease in step counts. Our findings may suggest Chinese physical activity will be negatively influenced by global warming.


Subject(s)
Meteorological Concepts , Wind , Temperature , Humidity , China , Incidence
10.
BMJ Glob Health ; 9(2)2024 02 06.
Article in English | MEDLINE | ID: mdl-38320803

ABSTRACT

INTRODUCTION: China initialised the expanded hepatitis A vaccination programme (EHAP) in 2008. However, the effectiveness of the programme remains unclear. We aimed to comprehensively evaluate the effectiveness of EHAP in the country. METHODS: Based on the provincial data on the incidence of hepatitis A (HepA), the population and meteorological variables in China, we developed interrupted time series (ITS) models to estimate the effectiveness of EHAP with the autocorrelation, seasonality and the meteorological confounders being controlled. Results were also stratified by economic zones, age groups and provinces. RESULTS: We found a 0.9% reduction (RR=0.991, 95% CI: 0.990 to 0.991) in monthly HepA incidence after EHAP, which was 0.3% greater than the reduction rate before EHAP in China. Across the three economic regions, we found a 1.1% reduction in HepA incidence in both central and western regions after EHAP, which were 0.3% and 1.2% greater than the reduction rates before EHAP, respectively. We found a decreased reduction rate for the eastern region. In addition, we found generally increased reduction rate after EHAP for age groups of 0-4, 5-14 and 15-24 years. However, we found decreased reduction rate among the 25-64 and ≥65 years groups. We found a slight increased rate after EHAP in Shanxi Province but not elsewhere. CONCLUSION: Our finding provides comprehensive evidence on the effectiveness of EHAP in China, particularly in the central and western regions, and among the population aged 0-24 years old. This study has important implications for the adjustment of vaccination strategies for other regions and populations.


Subject(s)
Hepatitis A , Humans , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Hepatitis A/epidemiology , Hepatitis A/prevention & control , Interrupted Time Series Analysis , Vaccination , China/epidemiology , Incidence
11.
BMC Infect Dis ; 24(1): 265, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408967

ABSTRACT

BACKGROUND: Infectious diarrhea remains a major public health problem worldwide. This study used stacking ensemble to developed a predictive model for the incidence of infectious diarrhea, aiming to achieve better prediction performance. METHODS: Based on the surveillance data of infectious diarrhea cases, relevant symptoms and meteorological factors of Guangzhou from 2016 to 2021, we developed four base prediction models using artificial neural networks (ANN), Long Short-Term Memory networks (LSTM), support vector regression (SVR) and extreme gradient boosting regression trees (XGBoost), which were then ensembled using stacking to obtain the final prediction model. All the models were evaluated with three metrics: mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE). RESULTS: Base models that incorporated symptom surveillance data and weekly number of infectious diarrhea cases were able to achieve lower RMSEs, MAEs, and MAPEs than models that added meteorological data and weekly number of infectious diarrhea cases. The LSTM had the best prediction performance among the four base models, and its RMSE, MAE, and MAPE were: 84.85, 57.50 and 15.92%, respectively. The stacking ensembled model outperformed the four base models, whose RMSE, MAE, and MAPE were 75.82, 55.93, and 15.70%, respectively. CONCLUSIONS: The incorporation of symptom surveillance data could improve the predictive accuracy of infectious diarrhea prediction models, and symptom surveillance data was more effective than meteorological data in enhancing model performance. Using stacking to combine multiple prediction models were able to alleviate the difficulty in selecting the optimal model, and could obtain a model with better performance than base models.


Subject(s)
Meteorological Concepts , Neural Networks, Computer , Humans , Incidence , Public Health , Diarrhea/epidemiology
12.
Head Neck ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38366693

ABSTRACT

PURPOSE: To evaluate the outcomes and toxicities of adding neoadjuvant chemotherapy (NAC) to concurrent chemoradiotherapy (CCRT) in elderly (≥65 years) patients with locoregionally advanced nasopharyngeal carcinoma (LANPC, stage III-IVa). METHODS AND MATERIALS: Using an NPC-specific database, 245 elderly patients with stage III-IVa NPC, receiving CCRT +/- NAC, and an Adult Co-morbidity Evaluation 27 (ACE-27) score <2 were included. Recursive partitioning analysis (RPA) based on TNM stage and Epstein-Barr virus (EBV) DNA were applied for risk stratification. The primary end point was disease-free survival (DFS). RESULTS: Two risk groups were generated by the RPA model. In the high-risk group (EBV DNA < 4000 copy/ml with stage IVa & EBV DNA ≥4000 copy/ml with stage III-IVa), patients treated with NAC plus CCRT achieved improved 5-year DFS rates compared to those who received CCRT alone (56.9% vs. 29.4%; p = 0.003). But we failed to observe the survival benefit of additional NAC in the low-risk group (EBV DNA <4000 copy/ml with stage III). The most common severe acute toxic effects were leucopenia (46.8% vs. 24.4%) and neutropenia (43.7% vs. 20.2%) in the NAC plus CCRT group versus CCRT group with statistically significant differences. CONCLUSIONS: The addition of NAC to CCRT was associated with better DFS for the high-risk group of elderly LANPC patients with ACE-27 score <2. However, the survival benefit of additional NAC was not observed in low-risk patients.

13.
Sustain Cities Soc ; 1012024 Feb.
Article in English | MEDLINE | ID: mdl-38222851

ABSTRACT

Urban greenness, as a vital component of the urban environment, plays a critical role in mitigating the adverse effects of rapid urbanization and supporting urban sustainability. However, the causal links between urban greenness and lung cancer mortality and its potential causal pathway remain poorly understood. Based on a prospective community-based cohort with 581,785 adult participants in southern China, we applied a doubly robust Cox proportional hazard model to estimate the causal associations between urban greenness exposure and lung cancer mortality. A general multiple mediation analysis method was utilized to further assess the potential mediating roles of various factors including particulate matter (PM1, PM2.5-1, and PM10-2.5), temperature, physical activity, and body mass index (BMI). We observed that each interquartile range (IQR: 0.06) increment in greenness exposure was inversely associated with lung cancer mortality, with a hazard ratio (HR) of 0.89 (95 % CI: 0.83, 0.96). The relationship between greenness and lung cancer mortality might be partially mediated by particulate matter, temperature, and physical activity, yielding a total indirect effect of 0.826 (95 % CI: 0.769, 0.887) for each IQR increase in greenness exposure. Notably, the protective effect of greenness against lung cancer mortality could be achieved primarily by reducing the particulate matter concentration.

14.
Int J Environ Health Res ; 34(2): 708-718, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36628496

ABSTRACT

Previous studies have linked exposure to light at night (LAN) with various health outcomes, but evidence is limited for the LAN-obesity association. Thestudy analysed data from 24,845 participants of the 33 Communities Chinese Health Study and obesity (BMI ≥28 kg/m2) was defined according to the Working Group on Obesity in China. The Global Radiance Calibrated Nighttime Lights data were used to estimate participants' LAN exposure. The mixed-effect regression models examined the LAN-BMI and LAN-obesity association. We found that higher LAN exposure was significantly associated with greater BMI and higher risk of obesity. Changes of BMI and the odds ratios (ORs) of obesity and 95% confidence intervals (CIs) for 2nd, 3rd, and 4th against the 1st quartile of LAN exposure were 0.363 (0.208, 0.519), 0.364 (0.211, 0.516) and 0.217 (0.051, 0.383); 1.228 (1.099, 1.371), 1.356 (1.196, 1.538) and 1.269 (1.124, 1.433), respectively. Age and regular exercise showed significant modification effects on the LAN-obesity association.


Subject(s)
Light , Obesity , Adult , Humans , Obesity/epidemiology , Public Health , China/epidemiology
15.
Sci Total Environ ; 912: 168997, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040364

ABSTRACT

BACKGROUND: China has a serious air pollution problem and a high prevalence of obesity. The interaction between the two and its impact on all-cause mortality is a public health issue of great concern. OBJECTIVES: This study aimed to investigate the association between long-term exposure to particulate matter with aerodynamic diameter ≤ 1 µm (PM1) and all-cause mortality, as well as the interaction effect of body mass index (BMI) in the association. METHODS: A total of 33,087 participants from 162 counties in 25 provinces in China were included, with annual average PM1 exposure being estimated based on the county address. The PM1-mortality relation was evaluated using the time-varying Cox proportional hazards models, with the dose-response relationship being fitted using the penalized splines. Besides, the potential interaction effect of BMI in the PM1-mortality relation was evaluated. RESULTS: The incidence of all-cause deaths was 76.99 per 10,000 person-years over a median of 8.2 years of follow-up. After controlling for potential confounders, the PM1-mortality relation was approximately J-shaped. The full-adjustment analysis observed the hazard ratio (HR) of all-cause mortality was 1.114 [95 % confidence interval (CI): 1.017-1.220] corresponding to a 10 µg/m3 rise in PM1 concentration. Further stratified analyses suggested the adverse effects of PM1 might be more pronounced among the underweight. DISCUSSION: Higher PM1 concentrations were associated with an increase in all-cause mortality. The BMI might further alter the relation, and the underweight population was the sensitive subgroup of the population that needed to be protected.


Subject(s)
Air Pollutants , Air Pollution , Humans , Body Mass Index , Prospective Studies , Thinness/chemically induced , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Cohort Studies , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Exposure/analysis
16.
Sci Total Environ ; 912: 169011, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040382

ABSTRACT

BACKGROUND: Although ambient heat exposure is linked with diabetes mortality, the impacts of heat exposure on diabetes-related hospitalizations remain controversial. Previous research did not examine the timing of heat-diabetes associations and relation with comorbidities/risk factors. OBJECTIVE: We examined the association between heat exposure and diabetes-related hospitalizations in the transitional and summer months and identified populations vulnerable to heat. METHODS: We conducted a time-stratified case-crossover study. Data on diabetes hospital admissions (primary diagnosis of type 1 and type 2 diabetes, 2013-2020) were collected by the New York State (NYS) Department of Health under the state legislative mandate. We treated temperature and air pollutants as continuous variables and defined the heat exposure as per interquartile range (IQR, a measure between the 25th and 75th percentiles) increase of daily mean temperature. Conditional logistic regressions were performed to quantify the heat-diabetes associations after controlling for air pollutants and time variant variables. Multiplicative-scale interactions between heat and demographics/comorbidities/risk factors on diabetes hospitalizations were investigated. RESULTS: Each IQR increase in temperature was associated with significantly increased risks for diabetes admissions that occurred immediately and lasted for an entire week during multi-day lags in the transitional month of May (ranges of excess risk: 3.1 %-4.8 %) but not in the summer (June-August) (ranges of excess risk: -0.3 %-1.3 %). The significant increases in the excess risk of diabetes were also found among diabetes patients with complications of neuronopathy (excess risk: 27.7 %) and hypoglycemia (excess risk: 19.1 %). Furthermore, the modification effects on the heat-diabetes association were significantly stronger in females, Medicaid enrollees, non-compliant patients, and individuals with comorbidities of atherosclerotic heart disease and old myocardial infarction. CONCLUSIONS: Ambient heat exposure significantly increased the burden of hospital admissions for diabetes in transitional rather than summer months indicating the importance of exposure timing. Vulnerability to heat varied by demographics and heart comorbidity.


Subject(s)
Air Pollutants , Air Pollution , Diabetes Mellitus, Type 2 , Female , Humans , Air Pollutants/analysis , Air Pollution/analysis , Cross-Over Studies , Diabetes Mellitus, Type 2/epidemiology , Hospitalization , Hot Temperature , Particulate Matter/analysis , Male
17.
Chemosphere ; 345: 140397, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37838030

ABSTRACT

With limited evidence on the neurological impact of particulate matter (PM) exposure in China, particularly for PM1 which is smaller but more toxic, we conducted a large Chinese cohort study using causal inference approaches to comprehensively clarify such impact. A total of 36,271 participants in southern China were recruited in 2015 and followed up through 2020. We obtained the neurological hospitalizations records by linking the cohort data to the electronic reports from 418 medical institutions across the study area. By using high-resolution PM concentrations from satellite-based spatiotemporal models and the cohort data, we performed marginal structural Cox models under causal assumptions to assess the potential causal links between time-varying PM exposure and neurological hospitalizations. Our findings indicated that increasing PM1, PM2.5, and PM10 concentrations by 1 µg/m³ were associated with higher overall neurological hospitalization risks, with hazard ratios (HRs) of 1.10 (95% confidence interval (CI) 1.04-1.16), 1.09 (95% CI 1.04-1.14), and 1.03 (95% CI 1.00-1.06), respectively. PM1 appeared to have a stronger effect on neurological hospitalization, with a 1% and 7% higher impact compared to PM2.5 and PM10, respectively. Additionally, each 1-µg/m3 increase in the annual PM1 concentration was associated with an elevated risk of hospitalizations for ischemic stroke (HR: 1.15; 95% CI, 1.06-1.26), which tended to be larger than the estimates for PM2.5 (HR: 1.13, 95% CI, 1.04-1.23) and PM10 (HR: 1.05, 95% CI, 1.00-1.09). Furthermore, never-married or female individuals tended be at a greater risk compared with their counterparts. Our study provides important insights into the health impact of particles, particularly smaller particles, on neurological hospitalization risk and highlights the need for clean-air policies that specifically target these particles.


Subject(s)
Air Pollutants , Air Pollution , Humans , Female , Particulate Matter/analysis , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , China/epidemiology , Hospitalization , Environmental Exposure/analysis
18.
Int J Hyg Environ Health ; 254: 114258, 2023 09.
Article in English | MEDLINE | ID: mdl-37703624

ABSTRACT

Anthropogenic heat has been reported to have significant health impacts, but research on its association with childhood adiposity is still lacking. In this study, we matched the 2008-2012 average anthropogenic heat flux, as simulated by a grid estimation model using inventory methods, with questionnaire and measurement data of 49,938 children randomly recruited from seven cities in Northeast China in 2012. After adjusting for social demographic and behavioral factors, we used generalized linear mixed-effect models to assess the association between anthropogenic heat flux and adiposity among children. We also examined the effect modification of various social demographic and behavioral confounders. We found that each 10 W/m2 increase in total anthropogenic heat flux and that from the industry source was associated with an increase of 5.82% (95% CI = 0.84%-11.05%) and 6.62% (95% CI = 0.87%-12.70%) in the odds of childhood adiposity. Similarly, the excess rate of adiposity among children were 5.26% (95% CI = -1.33%-12.29%) and 8.51% (95% CI = 2.24%-15.17%) per 1 W/m2 increase in the anthropogenic heat flux from transportation and buildings, and was 7.94% (95% CI = 2.28%-13.91%) per 0.001 W/m2 increase in the anthropogenic heat flux from human metabolism. We also found generally greater effect estimates among female children and children who were exposed to passive smoking during pregnancy, born by caesarean section, non-breastfed/mixed-fed, or lived within 20 m adjacent to the main road. The potential deleterious effect of anthropogenic heat exposure on adiposity among children may make it a new but major threat to be targeted by future mitigation strategies.


Subject(s)
Adiposity , Hot Temperature , Child , Humans , Female , Pregnancy , Cesarean Section , China/epidemiology , Obesity , Human Activities
19.
Sci Total Environ ; 897: 165234, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37400028

ABSTRACT

BACKGROUND: Little evidence exists regarding the combined effect between ambient temperature and air pollution exposure on maternal blood pressure (BP) and hypertensive disorders of pregnancy (HDP). OBJECTIVES: To assess effect modification by temperature exposure on the PM1-BP/HDP associations among Chinese pregnant women based on a nationwide study. METHODS: We conducted a cross-sectional country-based population study in China, enrolling 86,005 participants from November 2017 to December 2021. BP was measured with standardized sphygmomanometers. HDP was defined according to the American College of Obstetricians and Gynecologists' recommendations. Daily temperature data were obtained from the European Centre for Medium-Range Weather Forecasts. PM1 concentrations were evaluated using generalized additive model. Generalized linear mixed models were used to examine the health effects, controlling for multiple covariates. We also performed a series of stratified and sensitivity analyses. RESULTS: The pro-hypertensive effect of PM1 was observed in the first trimester. Cold exposure amplifies the first-trimester PM1-BP/HDP associations, with adjusted estimate (aß) for systolic blood pressure (SBP) of 3.038 (95 % CI: 2.320-3.755), aß for diastolic blood pressure (DBP) of 2.189 (95 % CI: 1.503-2.875), and aOR for HDP of 1.392 (95 % CI: 1.160-1.670). Pregnant women who were educated longer than 17 years or living in urban areas appeared to be more vulnerable to the modification in the first trimester. These findings remained robust after sensitivity analyses. CONCLUSIONS: First trimester maybe the critical exposure window for the PM1-BP/HDP associations among Chinese pregnant women. Cold exposure amplifies the associations, and those with higher education level or living in urban areas appeared to be more vulnerable.


Subject(s)
Air Pollutants , Air Pollution , Hypertension, Pregnancy-Induced , Humans , Female , Pregnancy , Blood Pressure , Cohort Studies , Hypertension, Pregnancy-Induced/epidemiology , Pregnant Women , Cross-Sectional Studies , East Asian People , Particulate Matter/analysis , Air Pollution/analysis , China/epidemiology , Air Pollutants/analysis , Environmental Exposure/analysis
20.
Sci Total Environ ; 899: 165588, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37474059

ABSTRACT

BACKGROUND: Although emerging studies have illuminated the protective association between greenness and respiratory mortality, efforts to quantify the potentially complex role of air pollution in the causal pathway are still limited. We aimed to examine the potential roles of air pollution in the causal pathway between greenness and respiratory mortality in China. METHODS: We used data from a community-based prospective cohort of 654,115 participants in southern China (Jan 2009-Dec 2020). We evaluated the greenness exposure as a three-year moving average Normalized Difference Vegetation Index (NDVI) within the 500 m buffer around the residence. Cox proportional hazards model was applied to estimate the association between greenness and respiratory mortality. Causal mediation analysis combined with a four-way dimensional decomposition method was utilized to simultaneously quantify the interaction and mediation role of air pollution including PM2.5, PM10, or NO2 on the greenness-respiratory mortality relationship. FINDINGS: We observed 6954 respiratory deaths during 12 years of follow-up. Increasing NDVI level from the lowest to the highest quartile is associated with a 19 % (95%CI: 13-25 %) reduction in the respiratory mortality risk. For the total protective effect, the proportion attributable to the overall negative interaction between greenness and air pollution (PM2.5, PM10, or NO2) was 2.2 % (1.7-3.2 %), 3.5 % (0.4-3.7 %), or 25.0 % (22.8-27.1 %), respectively. Simultaneously, we estimated 25.5 % (20.1-32.0 %), 49.5 % (32.5-71.9 %), or 1.0 % (0.8-1.2 %) of the total protective association was mediated through a reduction in PM2.5, PM10, or NO2, respectively. INTERPRETATION: Increased greenness exposure mitigated respiratory mortality through both the antagonistic interaction and mediation pathway of air pollution (PM2.5, PM10, or NO2).


Subject(s)
Air Pollutants , Air Pollution , Respiratory Tract Diseases , Humans , Nitrogen Dioxide/analysis , Prospective Studies , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Exposure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...